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Transformers are great!




Transformers are great!

But sometimes they are stupid.
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And LSTMs are
impractical and outdated



And LSTMs are
" impractical and outdated

But on some tasks they are better
than Transformers!
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Meanwhile State Space
Models are shiny and
promising




Meanwhile State Space
Models are shiny and
promising

But they desperately fail some tasks
that are easy for Transformers!




Then how can we even say that one architecture is better
than the others?



Then how can we even say that one architecture is better
than the others?

We can’t! But different architectures can solve different
tasks.

And theoretical analysis is here to help!



The research questions

All possible
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The tasks that an
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The research questions

All possible
tasks

~

The tasks that an
architecture can

express
The tasks that (
an architecture Can we find the exact borders of those
can learn circles?
\_
4
And understand why they are like
that?
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How can we formalize
the tasks?



Formal Languages

Palindrome

Alphabet X = {English letters}
Rule: empty string (¢) or a string s, where sa-1=s

Palindromes = {¢, noon, level, rotator, refer, madam...}



Regular




Vending Machine is a
Deterministic Finite Automata!
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Regular Languages

Def.

A language recognized by a Deterministic Finite Automata (DFA)

Example: Website Password

Your password should contain:
e >=1lower and uppercase letters
e >=1digits
e >=1special symbols

password strength: medium
I I |

Type your new password...



Stacks Make Pushdown Automata
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Counter Languages

Def.

A language recognized by a Pushdown Automata (PDA)



Let’'s Make a PDA Together!

Language: {Om1m| n >= 0}
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LSTM is an Automata’s Big Brother

® Sequentialism
e Memory and state



The task map for LSTMs

All possible

tasks \

The tasks that
LSTMs can express

(expressible by PDA)
Almost the same as

The tasks that
LSTMs can learn



How does this look for
Transformers ?



TOO MANY CHOICES
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Restricted Access Sequence Processing

A new programming language, fun:)
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Attention ]
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Restricted Access Sequence Processing
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Feed Forward

Attention ] x0'




Restricted Access Seaquence Processing

=

[ Feed Forward ]

Attention ]
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Restricted Access Sequence Processing

Initialise tokens
Operations on tokens
Select pairs of tokens

Aggregate the results of the
selects

Add layers / add heads

Tracr : Compiles these into
transformer weights

NOT THE ONLY WAY !!

JoB

DONE |
T



And what about
learnability?



If Transformers can express a language, it doesn't
mean they can learn it!

The simplest example: PARITY function

Is the number of “1" in a bitstring even or odd?

110010000 > 1
110000000 > 0
110001110 > 1
000000000 0

PARITY of length 1000 is easy to express,
but nearly impossible to learn!



The reason: sensitivity

A function is sensitive if a slight change in the input changes the output.

Formally:

x € {£1}" — bitstring of length n.

o x¥ 3 bitstring identical to x, but i-th bit is reversed.
f :a function {£1}" - R
Input Sensitivity:

s, 7) = 3 S1F0) — ()P

Average Sensitivity as,(f) — average value of s(x, f) over all
inputs of length n.



The reason: sensitivity
® Input Sensitivity:
s, 1) i= 7 2 170) = 1<)

® Average Sensitivity as,(f) — average value of s(x, f) over all
inputs of length n.

Average Sensitivity = probability that changing one bit in
the input changes the label (multiplied by n).

FIRST Is the first bit of the string 0 or 1? AS =1

MAJORITY Is there more 1s or 0s? AS = sqrt(n)

PARITY Is the number of 1s odd or even? AS =




The reason: sensitivity

Sensitivity Distribution: Uniform Initialization

[ Transformer
m LSTM

Transformers have a low-sensitivity bias!

The more sensitive the function is, the harder
it is for a Transformer to learn the function.

ormalized Frequency

Random Transformers have low sensitivity o o ols

Average Sensitivity

Figure from Bhattamishra et al. 2023

Random LSTMs have high sensitivity



The reason: sensitivity

Sensitivity Distribution: Uniform Initialization

[ Transformer
m LSTM

WHY?

Transformers have a low-sensitivity bias!

The more sensitive the function is, the harder
it is for a Transformer to learn the function.

ormalized Frequency

Random Transformers have low sensitivity

0.3 0.4 0.5

Average Sensitivity

Figure from Bhattamishra et al. 2023

Random LSTMs have high sensitivity



The proof that sensitive functions are hard

1. Hahn 2020: difference in outputs of a Transformer without LayerNorm on
inputs differing by 1 bit is bounded as O(1/n)

W

e

1100101010100010101110101101000100101 —— oo — C
1100101010101010101110101101000100101 — o,/ — cCc+ O(]/n)
s



The proof that sensitive functions are hard

2. LayerNorm can mitigate this by multiplying inputs with a large coefficient, but
only if the standard deviation of hidden representations is very low.

LN1(x> LNI<x') LN (x) - LN()| = O(1)
LN(x) = N LN = —m
X [ : 3 —x'| =0(/n)

JC ,,,,,,,,,,,,,,, )I’ x — x'| = O(1/n)



The proof that sensitive functions are hard

3. And this makes the minima of sensitive Transformers very brittle.
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The task map for Transformers

All possible

tasks \

The tasks that
Transformers can
learn

(functions of
low-sensitivity...
but that's not the
only restriction!)

The tasks that
Transformers can
express

(what is
expressible in
RASP)



State Space Models: A
New Hope



Training Inference

Fast! Slow...
Transformers (parallelizable) (scales quadratically with sequence length)
Slow... Fast!
RNNs (not parallelizable) (scales linearly with sequence length)

Source : https://newsletter. maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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What is a State Space ?

X
otential next state
y P ial
(x=3,y=1)
@ Current state State Vector( @)
(x=4,y=1)
X| 4
vyl 1
Distance toexit [ 7/
(potential location)
(x=4,y=3)
Distance
to exit
7) _
Exit

Source : https://newsletter.maartengrootendorst.com/p/a-visual-quide-to-mamba-and-state
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state

h'(t) :i=: A *  h(t) : + B * X(t)
State updat How the current How the input
state evolves over influences the state
time
State

Output How the current How the input
state translates to directly influences the
the output output

Source : https://newsletter.maartengrootendorst.com/p/a-visual-quide-to-mamba-and-state
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Skip connection

X B h cC—>Yy

Source : https://newsletter. maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Discrete Signal Continuous Signal
(Input) (Input)

Hold each value

until we reach step size (A)
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Continous Signal Discrete Signal
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Sample from
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Source : https://newsletter. maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Source : https://newsletter. maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state


https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

= S —k—

kemel — K = (CB, CAB, ..., CAB, ...)

y:X*R
/ X

output input  kernel

Source : https://newsletter. maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Continuous-time Recurrent or Convolutional

Discrétize
E < Kernel
D] : name is
i c ’
{E E @—P y . A( State )A ( State J A ‘¢
| E | ; B B

My name mg;
v efficient inference X unbounded context
X parallelizable training v parallelizable training

Source : https://newsletter. maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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But why now ? and why Mamba ?

nput  ELHE a3 Mamba Block
LSTMS say Compressing is hard ~

T

Mamba : Lets selectively compress P s B ovagestion®
Make B, C Matrices depend on the ——
input ’

rr= (sw)—activation —— (s
Add some norms and non linearity ; T

SSM

= activation or multiplication

“-._ projection "

Details skipped (but important)
1. Hardware aware
2. Selective parallel scan

Output W T



Transformers

RNNs

AN Mamba

Training

Fast!
(parallelizable)

Slow...
(not parallelizable)

Fast!

(parallelizable)

Inference

Slow...
(scales quadratically with sequence length)

Fast!
(scales linearly with sequence length)

Fast!

(scales linearly with sequence length +
unbounded context)




All that glitters is not Gold



Periodic

Parity
(aa)*

(abab)*

Aperiodic

FlipFlop

e a*b*

Bounded-
Depth Dyck

1

COUNTING

Dyck-n
Shuffle Dyck
abn

a"bncn

LSTM Expressiveness
¢ Periodic: Fully

s Aperiodic: Fully

¢ Counting: Fully

e Copy:None

Selective SSM

Expressiveness
¢ Periodic: Fully
e Aperiodic: Fully
¢ Counting: Fully
* Copy:None

COPYING

at N =exp(d)



Takeaways

Architectures have distinct
abilities and weaknesses

Identify those weaknesses
o Theoretical analysis
o Formal languages

And we can make
BETTER ARCHITECTURES

"IN-THEORY™



