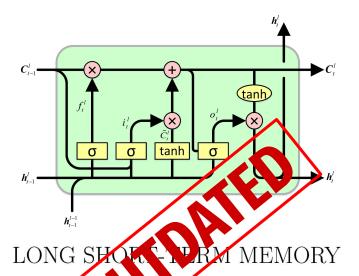
Transformers or RNNs or SSMs: Who's more sensitive?

Transformers are great!

Transformers are great!

But sometimes they are stupid.

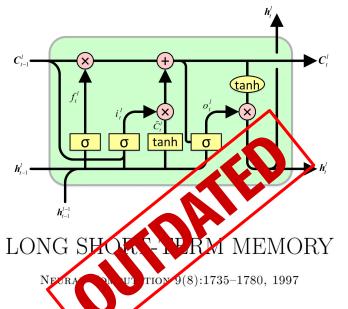


TION 9(8):1735-1780, 1997

And LSTMs are impractical and outdated

Sepp Hochreiter
Fakultät für Informatik
Technische Universität München
80290 München, Germany
hochreit@informatik.tu-muenchen.de
http://www7.informatik.tu-muenchen.de/~hochreit

Jürgen Schmidhuber
IDSIA
Corso Elvezia 36
6900 Lugano, Switzerland
juergen@idsia.ch
http://www.idsia.ch/~juergen



Sepp Hochreiter
Fakultät für Informatik
Technische Universität München
80290 München, Germany
hochreit@informatik.tu-muenchen.de
http://www7.informatik.tu-muenchen.de/~hochreit

Jürgen Schmidhuber
IDSIA
Corso Elvezia 36
6900 Lugano, Switzerland
juergen@idsia.ch
http://www.idsia.ch/~juergen

And LSTMs are impractical and outdated

But on some tasks they are better than Transformers!

Meanwhile State Space Models are shiny and promising

Meanwhile State Space Models are shiny and promising

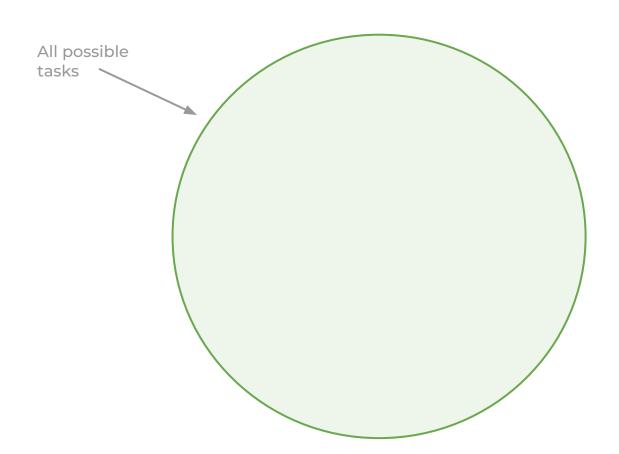
But they desperately fail some tasks that are easy for Transformers!

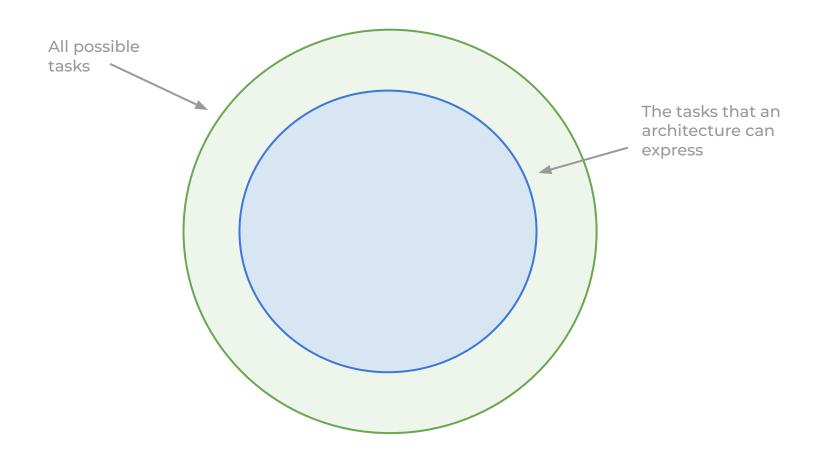
Then how can we even say that one architecture is better than the others?

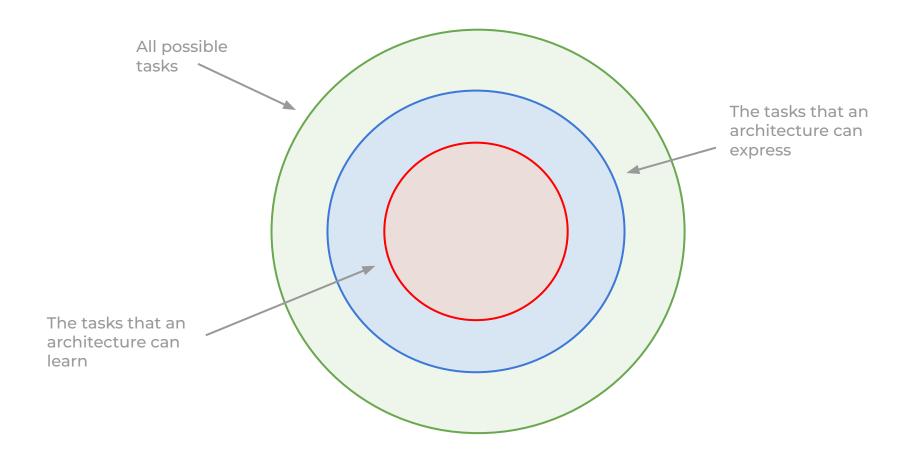
Then how can we even say that one architecture is better than the others?

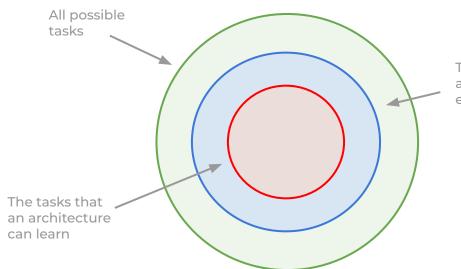
We can't! But different architectures can solve different tasks.

And theoretical analysis is here to help!









The tasks that an architecture can express

Can we find the exact borders of those circles?

And understand why they are like that?

How can we formalize

the tasks?

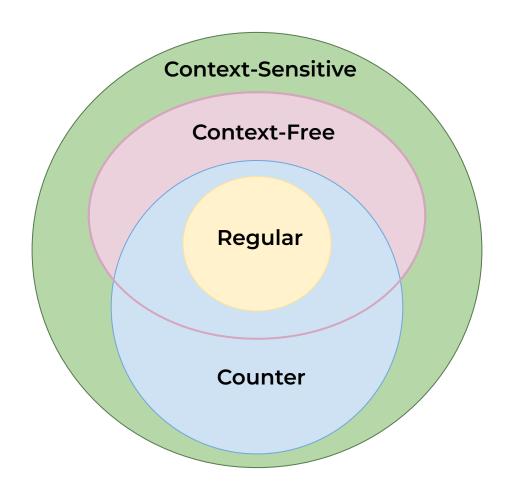
Formal Languages

Palindrome

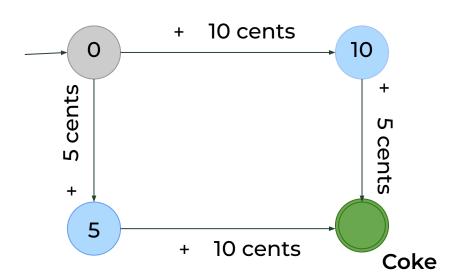
Alphabet **Σ** = {English letters}

Rule: empty string (ϵ) or a string s, where s^-1 = s

Palindromes = {\varepsilon\$, noon, level, rotator, refer, madam...}



Vending Machine is a Deterministic Finite Automata!



Regular Languages

Def.

A language recognized by a Deterministic Finite Automata (DFA)

Example: Website Password

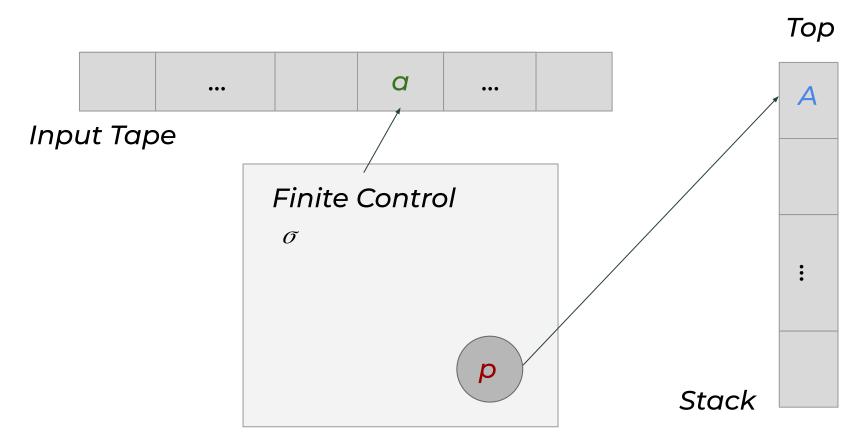
Your password should contain:

- >= 1 lower and uppercase letters
 - >= 1 digits
 - >= 1 special symbols

password strength: medium

Type your new password...

Stacks Make Pushdown Automata



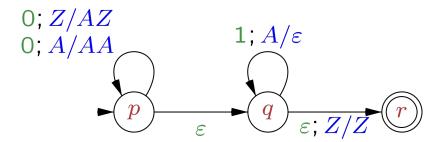
Counter Languages

Def.

A language recognized by a Pushdown Automata (PDA)

Let's Make a PDA Together!

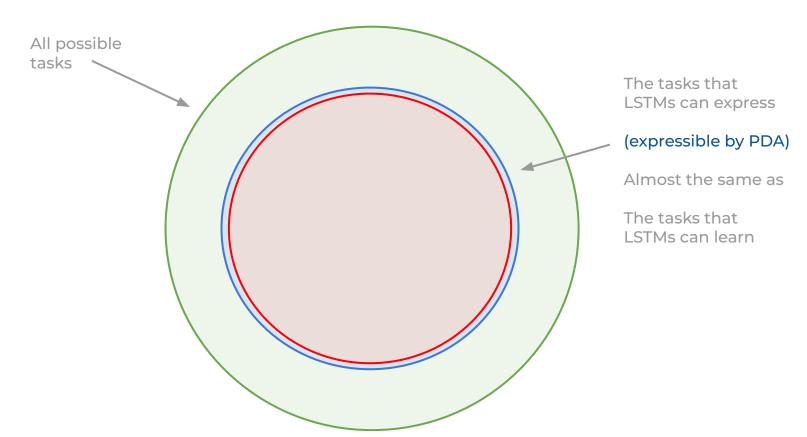
Language: $\{0^{n} 1^{n} | n >= 0\}$



LSTM is an Automata's Big Brother

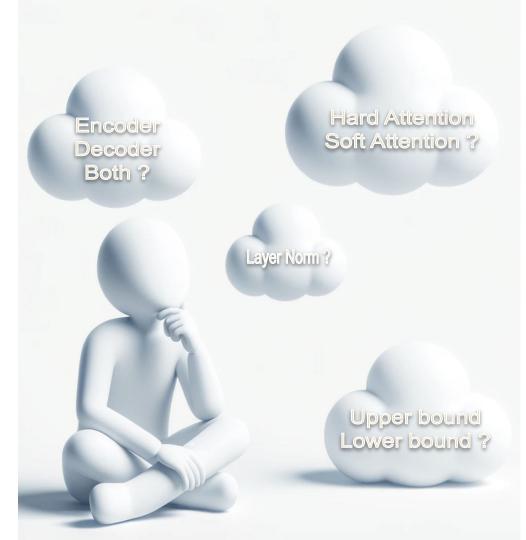
- Sequentialism
- Memory and state

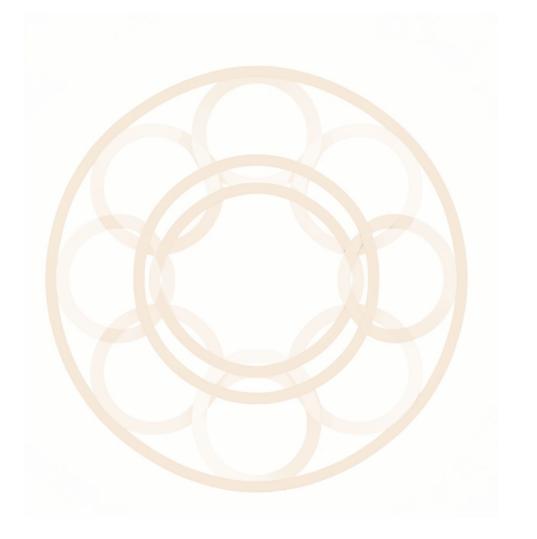
The task map for LSTMs



How does this look for Transformers?

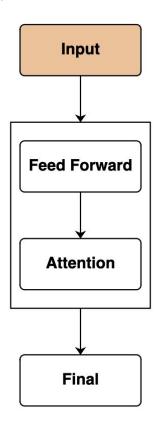
TOO MANY CHOICES

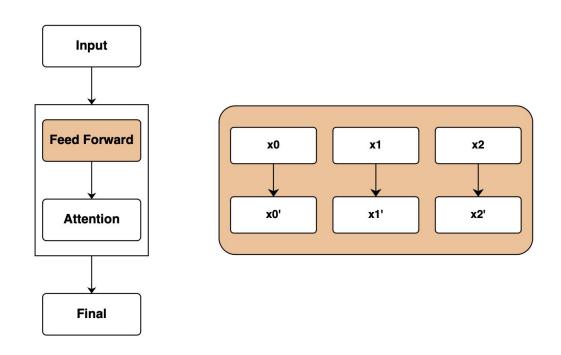


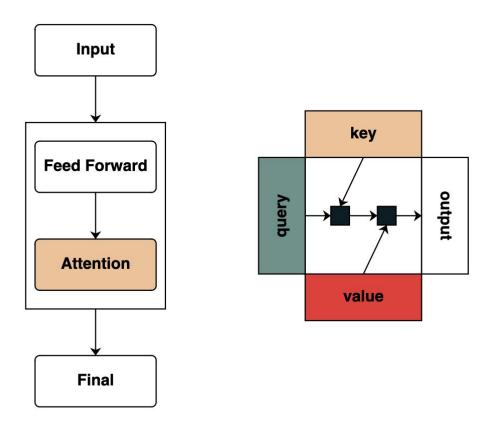


We will help you grasp this.

A new programming language, fun:)







- Initialise tokens
- Operations on tokens
- Select pairs of tokens
- Aggregate the results of the selects
- Add layers / add heads
- Tracr : Compiles these into transformer weights

NOT THE ONLY WAY!!

And what about

learnability?

If Transformers can express a language, it doesn't mean they can learn it!

The simplest example: PARITY function

Is the number of "1" in a bitstring even or odd?

PARITY of length 1000 is easy to express, but nearly impossible to learn!

The reason: sensitivity

A function is **sensitive** if a slight change in the input changes the output.

Formally:

- $x \in \{\pm 1\}^n$ bitstring of length n.
- $x^{\oplus i}$ a bitstring identical to x, but i-th bit is reversed.
- f: a function $\{\pm 1\}^n \to \mathbb{R}$
- Input Sensitivity:

$$s(x,f) := \frac{1}{4} \sum_{i} |f(x) - f(x^{\oplus i})|^2$$

• Average Sensitivity $as_n(f)$ – average value of s(x, f) over all inputs of length n.

The reason: sensitivity

• Input Sensitivity:

$$s(x, f) := \frac{1}{4} \sum_{i} |f(x) - f(x^{\oplus i})|^2$$

• Average Sensitivity $as_n(f)$ – average value of s(x, f) over all inputs of length n.

Average Sensitivity = probability that changing one bit in the input changes the label (multiplied by n).

FIRST	Is the first bit of the string 0 or 1?	AS = 1
MAJORITY	Is there more 1s or 0s?	AS = sqrt(n)
PARITY	Is the number of 1s odd or even?	AS = n

The reason: sensitivity

Sensitivity Distribution: Uniform Initialization

Transformers have a low-sensitivity bias!

The more sensitive the function is, the harder it is for a Transformer to learn the function.

Random Transformers have low sensitivity

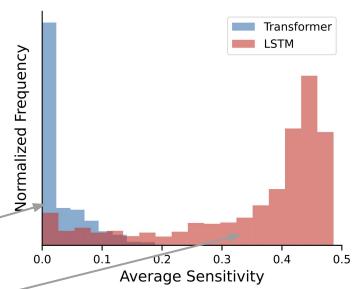


Figure from Bhattamishra et al. 2023

Random LSTMs have high sensitivity

The reason: sensitivity

WHY?

Transformers have a low-sensitivity bias!

The more sensitive the function is, the harder it is for a Transformer to learn the function.

Random Transformers have low sensitivity

Sensitivity Distribution: Uniform Initialization



Figure from Bhattamishra et al. 2023

Random LSTMs have high sensitivity

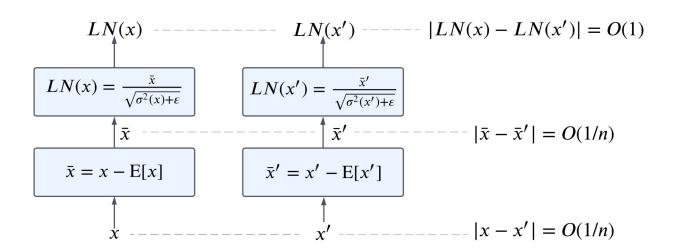
The proof that sensitive functions are hard

 Hahn 2020: difference in outputs of a Transformer without LayerNorm on inputs differing by 1 bit is bounded as O(1/n)

$$110010101010000101110101101000100101 \longrightarrow \begin{array}{c} c \\ c + O(1/n) \end{array}$$

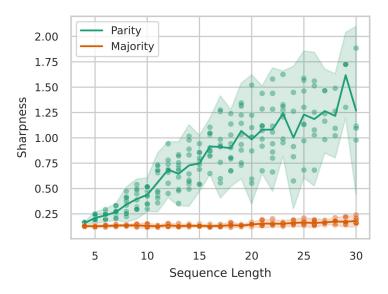
The proof that sensitive functions are hard

2. LayerNorm can mitigate this by multiplying inputs with a large coefficient, but only if the standard deviation of hidden representations is very low.

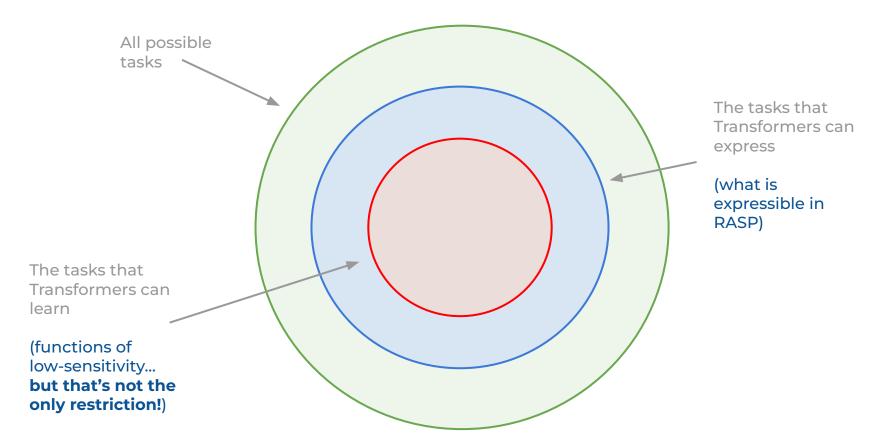


The proof that sensitive functions are hard

3. And this makes the minima of sensitive Transformers very brittle.



The task map for Transformers



State Space Models: A

New Hope

Training

Inference

Transformers

RNNs

Fast!

(parallelizable)

Slow...

(not parallelizable)

Slow...

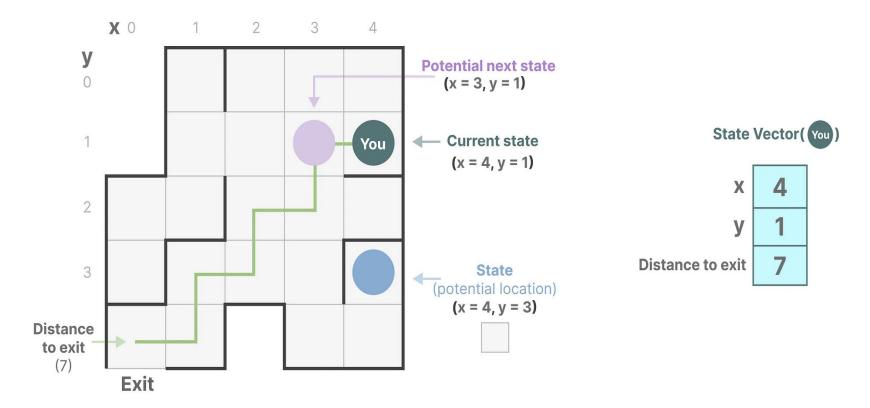
(scales **quadratically** with sequence length)

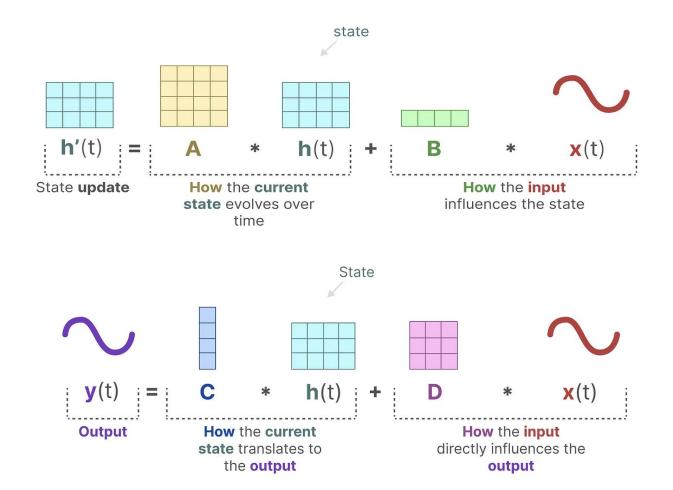
Fast!

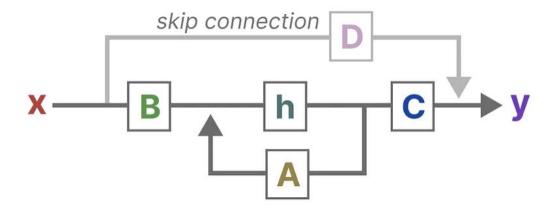
(scales linearly with sequence length)

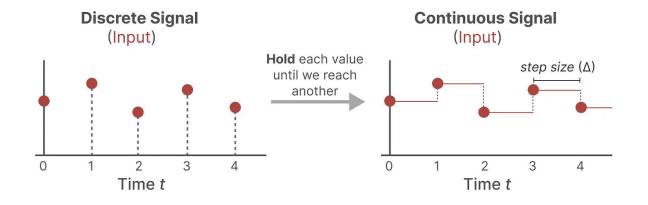
Source: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

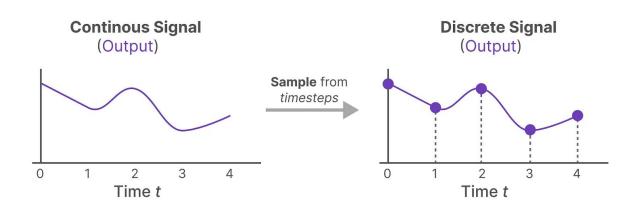
What is a State Space?

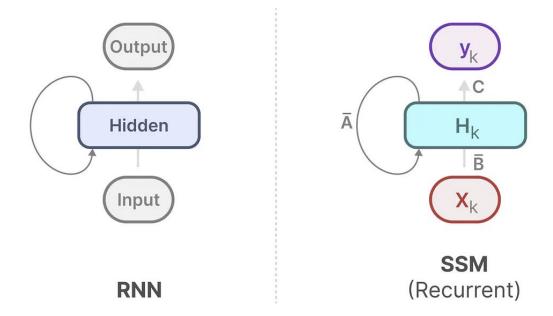


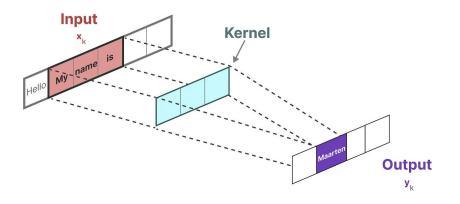






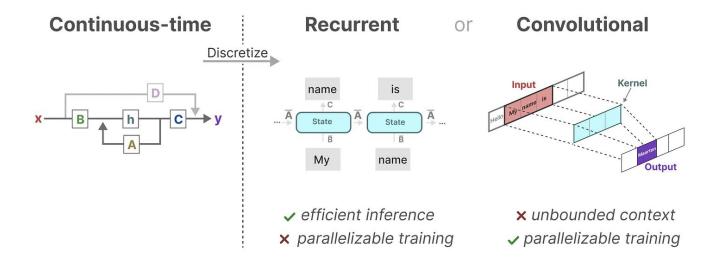






kernel
$$\rightarrow \overline{K} = (C\overline{B}, C\overline{AB}, ..., C\overline{A}, ...)$$

$$y = x * \overline{K}$$
output input kernel



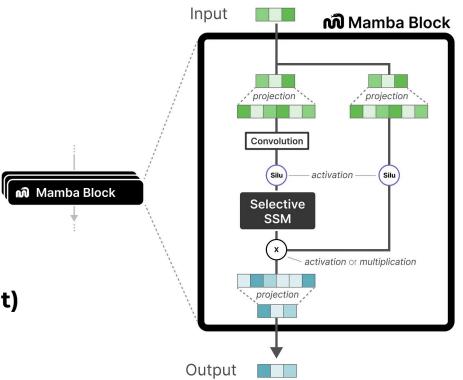
Source: https://newsletter.maartengrootendorst.com/p/a-visual-quide-to-mamba-and-state

But why now? and why Mamba?

- LSTMS say Compressing is hard
- Mamba: Lets selectively compress
- Make B, C Matrices depend on the input
- Add some norms and non linearity

Details skipped (but important)

- 1. Hardware aware
- 2. Selective parallel scan



Training

Fast!
(parallelizable)

RNNs

Slow...
(not parallelizable)

Fast!
(parallelizable)

Inference

Slow...

(scales quadratically with sequence length)

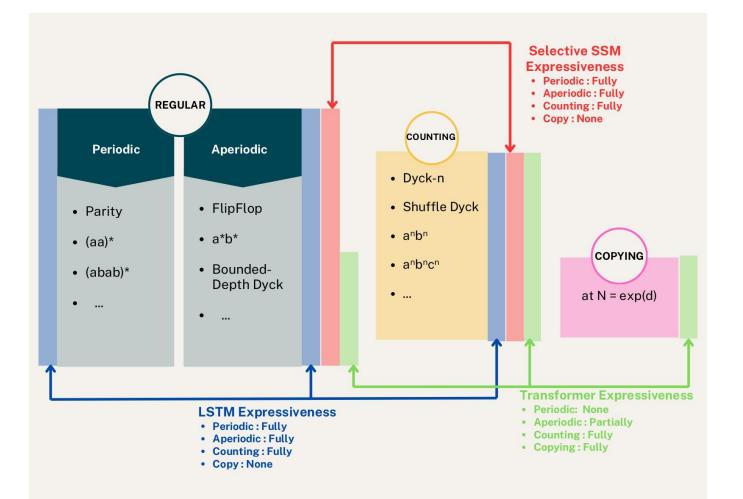
Fast!

(scales linearly with sequence length)

Fast!

(scales **linearly** with sequence length + **unbounded** context)

All that glitters is not Gold



Takeaways

Architectures have distinct abilities and weaknesses

- Identify those weaknesses
 - Theoretical analysis
 - Formal languages

 And we can make BETTER ARCHITECTURES

