Processing Language in Humans and Machines

Michael Hahn

May 17, 2024

• Assistant Professor (W2TTW3) in Language Science & Technology

- Assistant Professor (W2TTW3) in Language Science & Technology
- 2022 PhD, Stanford University

- Assistant Professor (W2TTW3) in Language Science & Technology
- 2022 PhD, Stanford University

 Previously research stays at MIT (2019), Facebook AI Research (2018), Edinburgh (2016)

- Assistant Professor (W2TTW3) in Language Science & Technology
- 2022 PhD, Stanford University

- Previously research stays at MIT (2019), Facebook AI Research (2018), Edinburgh (2016)
- B.Sc. and M.Sc. in Mathematics in Tübingen (2015)

1966: ELIZA

```
Welcome to
                    FFFFFF
                                    IIII
                                           777777
                                                    ΑΑΑΑΑ
                                    ΙI
                                             ZZ
                                    II
                                           777
                                                   AAAAAAA
                                           77
                           LLLLLL IIII ZZZZZZ
                                                        AA
  Eliza is a mock Rogerian psychotherapist.
  The original program was described by Joseph Weizenbaum in 1966.
  This implementation by Norbert Landsteiner 2005.
ELIZA: Is something troubling you?
       Men are all alike.
YOU:
ELIZA: What is the connection, do you suppose?
       They're always bugging us about something or other.
YOU:
ELIZA: Can you think of a specific example?
       Well, my boyfriend made me come here.
YOU:
ELIZA: Is it important to you that your boyfriend made you come here ?
       He says I'm depressed much of the time.
YOU:
ELIZA: I am sorry to hear that you are depressed.
YOU:
       It's true. I am unhappy.
ELIZA: Can you explain what made you unhappy ?
YOU:
```

Welcome to

1966: ELIZA

(DO YOU OFTEN FEEL 4)

(DO YOU WISH TO 3 ME)

((0) (YOU SAY 1)

(DO YOU 3 ANYONE ELSE))

(YOU = I ((O I O YOU O))

(WHY DO YOU THINK I 3 YOU)

(DO YOU ENJOY FEELING 4)

(YOU SEEM TO NEED TO 3 ME)

(OF WHAT DOES FEELING 4 REMIND YOU))

(DOES IT PLEASE YOU TO BELIEVE I AM 4)

(DO YOU SOMETIMES WISH YOU WERE 4) (PERHAPS YOU WOULD LIKE TO BE 4))

(DO YOU WISH TO BE ABLE TO 4) (DOES THAT TROUBLE YOU))

((O YOU O I O) (PERHAPS IN YOUR FANTASY WE 3 EACH OTHER)

((O YOU FEEL O) (TELL ME MORE ABOUT SUCH FEELINGS)

```
777
                                                                                                          AAAAAAA
                                                                                                                AA
                                                    Eliza is a mock Rogerian psychotherapist.
                                                    The original program was described by Joseph Weizenbaum in 1966.
                                                    This implementation by Norbert Landsteiner 2005.
                                                  ELIZA: Is something troubling you?
                                                                       alike.
                                                             000620
                                                                     e connection, do you suppose ?
                                                             000630
                                                                     ways bugging us about something or other.
                                                             000640
                                                             000650
                                                                     ink of a specific example ?
                                                             000660
                                                                     oyfriend made me come here.
                                                             000670
                                                             000680
                                                                     rtant to you that your boyfriend made you come here ?
                                                             000690
                                                                     m depressed much of the time.
                                                             000700
                                                             000710
                                                                      to hear that you are depressed.
(CAN YOU ELABORATE ON THAT) (DO YOU SAY 1 FOR SOME SPECIAL REASON)
                                                             000720
                                                             000730
                                                                      I am unhappy.
                                                             000740
                                                                     plain what made you unhappy ?
                                                             000750
                                                             000760
                                                             000770
                                                             000780
                                                             000790
```

IIII

AAAAA

Image credit: https://sites.google.com/view/elizagen-org/the-original-eliza

2011: Watson

Image credit: http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303/2165

2011: Watson

Question

Image credit: http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303/21

2022: ChatGPT

ChatGPT

2022: ChatGPT

What do you know about Saarland University?

Saarland University, also known as Universität des Saarlandes in German, is a public research university located in Saarbrücken, Saarland, Germany. Here are some key facts and information about Saarland University:

- Bilingual Tradition: The bilingual tradition continues today, with many courses offered in both languages. This is in part due to Saarland's historical connections with France and its proximity to the French border.
- Research Excellence: The university is known for its strong focus on research and innovation. It has several research centers and institutes, covering a wide range of fields, including computer science, materials science, nanotechnology, and social sciences.
- 4. International Collaboration: Saarland University has a strong reputation for international

2022: ChatGPT

What do you know about Saarland University?

Saarland University, also known as Universität des Saarlandes in German, is a public research university located in Saarbrücken, Saarland, Germany. Here are some key facts and information about Saarland University:

6 7

- Bilingual Tradition: The bilingual tradition continues today, with many courses offered in both languages. This is in part due to Saarland's historical connections with France and its proximity to the French border.
- Research Excellence: The university is known for its strong focus on research and innovation. It has several research centers and institutes, covering a wide range of fields, including computer science, materials science, nanotechnology, and social sciences.
- 4. International Collaboration: Saarland University has a strong reputation for international

Image credit: Vaswani et al, https://arxiv.org/pdf/1706.03762.pdf

Autocomplete

Helping people write code

GITHUB COPILOT: CHAT

monalisa

Write unit tests for this function

GitHub Copilot

```
import unittest
import datetime
class TestParseExpenses(unittest.TestCase):
    def test_parse_expenses_with_valid_input(self):
        expenses_string = '2023-01-02 -34.01 USD\n2023-01-
        expected_output = [(datetime.datetime(2023, 1, 2)
        self.assertEqual(parse_expenses(expenses_string),
    def test_parse_expenses_with_empty_input(self):
        expenses_string = ''
        expected_output = []
        self.assertEqual(parse_expenses(expenses_string),
if __name__ == '__main__':
    unittest.main()
```

The code assumes that the datetime module is imported. The test cases cover different scenarios such as valid input, empty input, input with comments, invalid date format, and invalid value format.

Education

You

Explain photosynthesis to a five-year old.

ChatGPT

Sure, I'll explain photosynthesis in a simple way for a five-year-old:

Imagine plants are like hungry little chefs. They need food to grow big and strong, just like y need your snacks and meals.

Now, these plant chefs are very smart because they can make their own food, and they do it the help of sunlight, air, and water. It's like a magical recipe!

The plant uses its special leaves to catch sunlight, just like you might use a flashlight to find toys in the dark. Then, the plant takes a big gulp of air, just like you breathe in and out. Final

Customer Service Chatbots

M You
Explain photosynthesis to a five-year old.

ChatGPT

Sure, I'll explain photosynthesis in a simple way for a five-year-old:

Imagine plants are like hungry little chefs. They need food to grow big and strong, just like you need your snacks and meals.

Now, these plant chefs are very smart because they can make their own food, and they do it with the help of sunlight, air, and water. It's like a magical recipe!


```
GITHUB COPILOT: CHAT

monalisa

Write unit tests for this function

import unittest
import datetime

class TestParseExpenses(unittest.TestCase):
    def test_parse_expenses_with_valid_input(self):
        expenses_string = '2023-01-02 -34.01 USD\n2023-01
        expenses_string = '2023-01-02 -34.01 USD\n2023-01
        expenses_string = '2023-01-02 -34.01 USD\n2023-01
        expenses_string = '10
        sepenses_string = ''
        expenses_string = ''
        expenses_stri
```


M You

Explain photosynthesis to a five-year old.

6 ChatGPT

These models are black boxes.

Sure, I'll explain photosynthesis in a simple way for a five-year-old:

Imagine plants are like hungry little chefs. They need food to grow big and strong, just like you need your snacks and meals.

Now, these plant chefs are very smart because they can make their own food, and they do it with the help of sunlight, air, and water. It's like a magical recipe!

I've moved and I'd like to update my address. How can I do that?

Hi Robert, you can update both your shipping and billing address by clicking Account

... UltimateGPT

Perfect, thanks!

+ Type a message...


```
GITHUB COPILOT: CHAT

monalisa

Write unit tests for this function

GitHub Copilot

import unittest
import datetime

class TestParseExpenses(unittest.TestCase):
    def test_parse_expenses_with_valid_input(self):
        expenses_string = '2823-03-02 -34.01 USO\n2023-01
        expected_output = [(datetime.datetime(2823, 1, 2)
        self-assertEqual(parse_expenses(expenses, string),

def test_parse_expenses_with_empty_input(self):
        expenses_string = ''
        expenses_string = ''
        expensed_output = []
        self-assertEqual(parse_expenses(expenses_string),

if __name__ == '__main__':
        unittest.main()

The code assumes that the datetime module is imported. The test
cases cover different scenarios such as valid input, empty input, input
with comments, invalid date format, and invalid value format.
```


M You

Explain photosynthesis to a five-year old.

ChatGPT

Sure, I'll explain photosynthesis in a simple way for a five-year-old:

Imagine plants are like hungry little chefs. They need food to grow big and strong, just like you need your snacks and meals.

Now, these plant chefs are very smart because they can make their own food, and they do it with the help of sunlight, air, and water. It's like a magical recipe!

These models are black boxes.

Hard to understand their limitations & failures.


```
GITHUB COPILOT: CHAT

monalisa

Write unit tests for this function

import unittest
import datetime

class TestParseExpenses(unittest.TestCase):
    def test_parse_expenses_with_valid_input(self):
        expenses_string = '2023-01-02 - 34.01 USO\n2023-01
        expected_output = ((datetime.datetime(2023, 1, 2)
        solf-assertEqual(parse_expenses(expenses, string),

    def test_parse_expenses_with_empty_input(self):
        expenses_string = ''
        expenses_string =
```


You
 Explain photosynthesis to a five-year old.

 ChatGPT
 Sure, I'll explain photosynthesis in a simple way for a five-year-old:
 Imagine plants are like hungry little chefs. They need food to grow big and strong, just like you need your snacks and meals.

Now, these plant chefs are very smart because they can make their own food, and they do it with the help of sunlight, air, and water. It's like a magical recipe!

These models are black boxes.

Hard to understand their limitations & failures.

Creates problems for real-world applications.

What are the in-principle capabilities and limitations of neural ML architectures?

HG, in subm. 2023 HJF, TACL 2021 HHGLM, EMNLP 2021 HB, TACL 2021 H, TACL 2020

What are the in-principle capabilities and limitations of neural ML architectures?

Can we use LMs to reverse-engineer human language comprehension?

HG, in subm. 2023
HJF, TACL 2021
HHGLM, EMNLP 2021
HB, TACL 2021
H, TACL 2020

HK, Cognition 2023HFLG, PNAS 2022HJF, PNAS 2020HFBB, CogSci 2019HK, EMNLP 2016

What are the in-principle capabilities and limitations of neural ML architectures?

Can we use LMs to reverse-engineer human language comprehension?

HG, in subm. 2023 HJF, TACL 2021 HHGLM, EMNLP 2021 HB, TACL 2021 H, TACL 2020

HK, Cognition 2023HFLG, PNAS 2022HJF, PNAS 2020HFBB, CogSci 2019HK, EMNLP 2016

Capabilities and Limitations of Transformers

What capabilities can we expect, given the architecture and the training data?

```
Parity (xor)
   Bit strings with even
     number of 1s
101
0000101011 000001011
```

Parity (xor) Bit strings with even number of 1s 101 0000101011 000001011 Relevance to Language: Negation

Parity (xor) Bit strings with even number of 1s 101 0000101011 000001011 Relevance to Language: Negation

happy

even

happy

Parity (xor) Bit strings with even number of 1s 101 0000101011 000001011 Relevance to Language: Negation

happy even

happy

unhappy *odd*

not (happy)

Parity (xor) Bit strings with even number of 1s 101 000001011 0000101011

Relevance to Language: Negation

happy even

happy

unhappy *odd*

not (happy)

not unhappy even

not (not (happy))

Theorem Hahn, TACL 2020

No transformer can represent Parity robustly at all input lengths.

Attention Head

 $q_i = \mathbf{Q}x_i$ query

$$X_1 X_2 X_3 X_4 X_5$$

Attention Head

Attention Head

Attention Head

Here: "hard attention". Similar result for "soft attention".

Information is propagated upwards

Suspected to have limited expressive capacity

(Tran et al., 2018; Dehghani et al., 2019; Shen et al., 2018; Chen et al., 2018; Hao et al., 2019)

Information is propagated upwards

Suspected to have limited expressive capacity

(Tran et al., 2018; Dehghani et al., 2019; Shen et al., 2018; Chen et al., 2018; Hao et al., 2019)

Computation paths have bounded length

Information is propagated upwards

Suspected to have limited expressive capacity

But, previously no proof for this intuition

Computation paths have bounded length

Information is propagated upwards

Suspected to have limited expressive capacity

But, previously no proof for this intuition

Theorem (TACL 2020)

No transformer can represent Parity robustly at all input lengths.

Assume we have a transformer for Parity.

Assume we have a transformer for Parity.

Construct two inputs that are classified the same

Assume we have a transformer for Parity.

Construct two inputs that are classified the same, even though one is EVEN and the other is ODD.

Assume we have a transformer for Parity.

Construct two inputs that are classified the same, even though one is EVEN and the other is ODD.

Assume we have a transformer for Parity.

Construct two inputs that are classified the same, even though one is EVEN and the other is ODD.

Method: Strategically fix a few input bits to 'distract' the transformer, so that it ignores part of the input.

Assume we have a transformer for Parity.

Construct two inputs that are classified the same, even though one is EVEN and the other is ODD.

Method: Strategically fix a few input bits to 'distract' the transformer, so that it ignores part of the input.

Assume we have a transformer for Parity.

Construct two inputs that are classified the same, even though one is EVEN and the other is ODD.

Method: Strategically fix a few input bits to 'distract' the transformer, so that it ignores part of the input.

Approach: Probabilistic Method

Set each input i.i.d. to

Set each input i.i.d. to

Set each input i.i.d. to

Analogous to Random Restrictions from Circuit Complexity!

Furst, Saxe, Sipser 1984 Håstad 1986

Enough to show that this is > 0 if the input string is sufficiently long!

Enough to show that this is > 0 if the input string is sufficiently long!

Show this by

Enough to show that this is > 0 if the input string is sufficiently long!

Show this by

1. calculating for each head

Enough to show that this is > 0 if the input string is sufficiently long!

Show this by

- 1. calculating for each head
- combining via Lovasz Local Lemma

Enough to show that this is > 0 if the input string is sufficiently long!

Show this by

- 1. calculating for each head
- combining via Lovasz Local Lemma
- induction over number of layers

Assume we have a transformer for Parity.

Construct two inputs that are classified the same, even though one is EVEN and the other is ODD.

Method: Strategically fix a few input bits to 'distract' the transformer, so that it ignores part of the input.

Assume we have a transformer for Parity.

Construct two inputs that are classified the same, even though one is EVEN and the other is ODD.

These strings will be classified the same, even though their parities are different.

Assume we have a transformer for Parity.

Construct two inputs that are classified the same, even though one is EVEN and the other is ODD.

These strings will be classified the same, even though their parities are different.

Contradiction!

Limitations of Transformers

Theorem (TACL 2020)

No transformer can represent Parity robustly at all input lengths.

Limitations of Transformers

Theorem (TACL 2020)

No transformer can represent Parity robustly at all input lengths.

Consistently confirmed by empirical studies

- Bhattamishra et al 2020
- Chiang and Cholak 2021
- Delétang et al 2022
- Ruoss et al 2023

Average number of Hamming neighbors on which the label flips

("average sensitivity" or "total influence")

Average number of Hamming neighbors on which the label flips ("average sensitivity" or "total influence")

Average number of Hamming neighbors on which the label flips ("average sensitivity" or "total influence")

Average number of Hamming neighbors on which the label flips ("average sensitivity" or "total influence")

Average number of Hamming neighbors on which the label flips ("average sensitivity" or "total influence")

Average number of Hamming neighbors on which the label flips ("average sensitivity" or "total influence")

Average number of Hamming neighbors on which the label flips ("average sensitivity" or "total influence")

more sensitive functions sharper minima

What is the parity of the following bit string? 0111011010

0111011010

What is the parity of the following bit string? 0111011010

0111011010

six 1's --> even parity

You

What is the parity of the following bit string? 0111011010

ChatGPT

To determine the parity of a bit string, you count the number of 1s in the string. If the count of 1s is even, the parity is even, and if the count is odd, the parity is odd.

You

What is the parity of the following bit string? 0111011010

ChatGPT

To determine the parity of a bit string, you count the number of 1s in the string. If the count of 1s is even, the parity is even, and if the count is odd, the parity is odd.

In the bit string "0111011010," there are 5 ones. Since 5 is an odd number, the parity of the bit string is odd.

You

What is the parity of the following bit string? 0111011010

ChatGPT

To determine the parity of a bit string, you count the number of 1s in the string. If the count of 1s is even, the parity is even, and if the count is odd, the parity is odd.

In the bit string "0111011010," there are 5 ones. Since 5 is an odd number, the parity of the bit string is odd.

It is even inconsistent across runs

What is the parity of the following bit string? 0111011010

To determine the parity of a bit string, you need to count the number of 'I' bits in the string. If the count is even, the parity is even; if the count is odd, the parity is odd.

Let's count the '1' bits in the given bit string: 0111011010

There are five '1' bits in the string. Since 5 is an odd number, the parity of the bit string is odd.

It is even inconsistent across runs

You

What is the parity of the following bit string? 0111011010

To determine the parity of a bit string, you need to count the number of '1' bits in the string. If the count is even, the parity is even; if the count is odd, the parity is odd.

Let's count the '1' bits in the given bit string: 0111011010

There are five '1' bits in the string. Since 5 is an odd number, the parity of the bit string is odd.

odd

You

What is the parity of the following bit string? 0111011010

ChatGPT

To determine the parity of a bit string, you count the number of 1s in the string. If the count is even, the parity is even; if the count is odd, the parity is odd.

Let's count the number of 1s in the given bit string: 0111011010.

1. Count of 1s: 6

Since the count of 1s is even (6 is an even number), the parity of the given bit string is even.

It is even inconsistent across runs

You

What is the parity of the following bit string? 0111011010

ChatGPT

To determine the parity of a bit string, you need to count the number of '1' bits in the string. If the count is even, the parity is even; if the count is odd, the parity is odd.

Let's count the '1' bits in the given bit string: 0111011010

There are five '1' bits in the string. Since 5 is an odd number, the parity of the bit string is odd.

0075

odd

You

What is the parity of the following bit string? 0111011010

ChatGPT

To determine the parity of a bit string, you count the number of 1s in the string. If the count is even, the parity is even; if the count is odd, the parity is odd.

Let's count the number of 1s in the given bit string: 0111011010.

1. Count of 1s: 6

Since the count of 1s is even (6 is an even number), the parity of the given bit string is even.

You

What is the parity of the following bit string? 0111011010

ChatGPT

To determine the parity of a bit string, you count the number of ones in the string. If the count is even, the parity is even; if the count is odd, the parity is odd.

Let's count the number of ones in the given bit string: 0111011010.

Number of ones: 1+1+1+1+1+1+0+1+0+0=7

Since the count of ones is odd (7), the parity of the bit string is odd.

You

What is 61157*4555?

You

What is 61157*4555?

ChatGPT

The product of 61157 multiplied by 4555 is 278,409,235.

You

What is 61157*4555?

ChatGPT

In reality, it's: 278,570,135

The product of 61157 multiplied by 4555 is 278,409,235.

You

The doctor who the lawyer who the janitor distrusted called back was walking a dog. Who called whom?

Getting this right requires context-free parsing. Similar limitations apply as for PARITY Hahn, TACL 2020.

You

The doctor who the lawyer who the janitor distrusted called back was walking a dog. Who called whom? called back the lawyer

ChatGPT

The sentence is a bit complex, but let's break it down:

- The janitor distrusted the lawyer.
- The lawyer distrusted the doctor.
- The doctor who the lawyer distrusted called back.

So, in the end, it was the doctor who called back. The person walking the dog is the doctor whom the lawyer distrusted.

You

The doctor who the lawyer who the janitor distrusted called back was walking a dog. Who called whom? called back the lawyer

ChatGPT

The sentence is a bit complex, but let's break it down:

- The janitor distrusted the lawyer.
- The lawyer distrusted the doctor.
- The doctor who the lawyer distrusted called back.

So, in the end, it was the doctor who called back. The person walking the dog is the doctor whom the lawyer distrusted.

You

The doctor who the lawyer who the janitor distrusted called back was walking a dog. Who called whom? called back the lawyer

ChatGPT

The sentence is a bit complex, but let's break it down:

- The janitor distrusted the lawyer.
- The lawyer distrusted the doctor.
- The doctor who the lawyer distrusted called back.

incorrect!

So, in the end, it was the doctor who called back. The person walking the dog is the doctor whom the lawyer distrusted.

Take-Away

Theory uncovers limitations that are relevant even for today's LLMs.

Take-Away

Theory uncovers limitations that are relevant even for today's LLMs.

Transformers struggle with highly sensitive computations.

What are the computational mechanisms needed for language understanding?

What are the in-principle capabilities and limitations of neural ML architectures?

Can we use LMs to reverse-engineer human language comprehension?

HG, in subm. 2023
HJF, TACL 2021
HHGLM, EMNLP 2021
HB, TACL 2021
H, TACL 2020

HK, Cognition 2023HFLG, PNAS 2022HJF, PNAS 2020HFBB, CogSci 2019HK, EMNLP 2016

The two young sea-lions took not the slightest interest in our arrival. They were playing on the jetty, rolling over and tumbling into the water together, entirely

The two young sea-lions took not the slightest interest in our arrival. They were playing on the jetty, rolling over and tumbling into the water together, entirely

The two young sea-lions took not the slightest interest in our arrival. They were playing on the jetty, rolling over and tumbling into the water together, entirely

Interest in human reading for NLP

(e.g., Barrett et al 2018; Malmaud et al 2020; Sood et al 2020)

Interest in human reading for NLP

(e.g., Barrett et al 2018; Malmaud et al 2020; Sood et al 2020)

Prior approaches:

supervised models

(Nilsson and Nivre 2009; Mathies and Sogaard 2013)

Interest in human reading for NLP

(e.g., Barrett et al 2018; Malmaud et al 2020; Sood et al 2020)

Prior approaches:

supervised models

hand-crafted models

(Nilsson and Nivre 2009; Mathies and Sogaard 2013)

(Engbert et al 2002; Reichle et al 1998, 2009)

Interest in human reading for NLP

(e.g., Barrett et al 2018; Malmaud et al 2020; Sood et al 2020)

Prior approaches:

supervised models

hand-crafted models

Limitations:

Need human gaze data

(Nilsson and Nivre 2009; Mathies and Sogaard 2013)

(Engbert et al 2002; Reichle et al 1998, 2009)

Interest in human reading for NLP

(e.g., Barrett et al 2018; Malmaud et al 2020; Sood et al 2020)

Prior approaches:

supervised models

hand-crafted models

(Nilsson and Nivre 2009; Mathies and Sogaard 2013)

(Engbert et al 2002; Reichle et al 1998, 2009)

Limitations:

Need human gaze data

Does not generalize across reading tasks

Interest in human reading for NLP

(e.g., Barrett et al 2018; Malmaud et al 2020; Sood et al 2020)

Prior approaches:

supervised models

hand-crafted models

(Nilsson and Nivre 2009; Mathies and Sogaard 2013)

(Engbert et al 2002; Reichle et al 1998, 2009)

Limitations:

Need human gaze data

Does not generalize across reading tasks

My approach:

Unsupervised model overcoming limitations

Hypothesis: Human reading is optimized for

Hypothesis: Human reading is optimized for

efficiently extracting information

Hypothesis: Human reading is optimized for

efficiently extracting information

while

maximizing speed

The two young sea-lions took not the slightest interest

Reader Network reads text

Reader Network reads text

Reader Network reads text

Reader Network reads text

Reader Network reads text

Hypothesis: Human reading is optimized for

efficiently extracting information

while

maximizing speed

Training Objective

Solve downstream task with minimal attention:

arg min \mathbb{E} [TaskLoss + α #{Words Read}]

Hypothesis: Human reading is optimized for

efficiently extracting information

while

maximizing speed

Training Objective

Solve downstream task with minimal attention:

arg min **E** [TaskLoss + α #{Words Read}]

Hypothesis: Human reading is optimized for

efficiently extracting information

while

maximizing speed

Training Objective

Solve downstream task with minimal attention:

arg min **E** [TaskLoss + α #{Words Read}]

Trained using reinforcement learning (policy gradient).

100%	
100 %	
50%	
0%	

NoPreview Group (10 participants)

Sabra is recalling 30,000 cases of hummus due to possible contamination with Listeria, the U.S. said Wednesday. The nationwide recall is voluntary. So far, no illnesses caused by the hummus have been reported. The potential for contamination was discovered when a routine, random sample collected at a Michigan store on March 30 tested positive for Listeria monocytogenes. The FDA issued a list of the products in the recall. Anyone who has purchased any of the items is urged to dispose of or return it to the store for a full refund. Listeria monocytogenes can cause serious and sometimes fatal infections in young children, frail or elderly people, and others with weakened immune systems, the FDA says. Although some people may suffer only short-term symptoms such as high fever, severe headache, nausea, abdominal pain and diarrhea, Listeria can also cause miscarriages and stillbirths among pregnant women.

NoPreview Group (10 participants)

- Sabra is recalling 30,000 cases of hummus due to possible contamination with Listeria, the U.S. said Wednesday. The nationwide recall is voluntary. So far, no illnesses caused by the hummus have been reported. The potential for contamination was discovered when a routine, random sample collected at a Michigan store on March 30 tested positive for Listeria monocytogenes. The FDA issued a list of the products in the recall. Anyone who has purchased any of the items is urged to dispose of or return it to the store for a full refund. Listeria monocytogenes can cause serious and sometimes fatal infections in young children, frail or elderly people, and others with weakened immune systems, the FDA says. Although some people may suffer only short-term symptoms such as high fever, severe headache, nausea, abdominal pain and diarrhea, Listeria can also cause miscarriages and stillbirths among pregnant women.
- Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

NoPreview Group (10 participants)

- Sabra is recalling 30,000 cases of hummus due to possible contamination with Listeria, the U.S. said Wednesday. The nationwide recall is voluntary. So far, no illnesses caused by the hummus have been reported. The potential for contamination was discovered when a routine, random sample collected at a Michigan store on March 30 tested positive for Listeria monocytogenes. The FDA issued a list of the products in the recall. Anyone who has purchased any of the items is urged to dispose of or return it to the store for a full refund. Listeria monocytogenes can cause serious and sometimes fatal infections in young children, frail or elderly people, and others with weakened immune systems, the FDA says. Although some people may suffer only short-term symptoms such as high fever, severe headache, nausea, abdominal pain and diarrhea, Listeria can also cause miscarriages and stillbirths among pregnant women.
- Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

Answers: (1) Michigan (2) Washington (3) Ohio (4) Georgia

WithPreview Group (10 participants)

Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

NoPreview Group (10 participants)

- Sabra is recalling 30,000 cases of hummus due to possible contamination with Listeria, the U.S. said Wednesday. The nationwide recall is voluntary. So far, no illnesses caused by the hummus have been reported. The potential for contamination was discovered when a routine, random sample collected at a Michigan store on March 30 tested positive for Listeria monocytogenes. The FDA issued a list of the products in the recall. Anyone who has purchased any of the items is urged to dispose of or return it to the store for a full refund. Listeria monocytogenes can cause serious and sometimes fatal infections in young children, frail or elderly people, and others with weakened immune systems, the FDA says. Although some people may suffer only short-term symptoms such as high fever, severe headache, nausea, abdominal pain and diarrhea, Listeria can also cause miscarriages and stillbirths among pregnant women.
- Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

Answers: (1) Michigan (2) Washington (3) Ohio (4) Georgia

WithPreview Group (10 participants)

Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

Sabra is recalling 30,000 cases of hummus due to possible contamination with Listeria, the U.S. said Wednesday. The nationwide recall is voluntary. So far, no illnesses caused by the hummus have been reported. The potential for contamination was discovered when a routine, random sample collected at a Michigan store on March 30 tested positive for Listeria monocytogenes. The FDA issued a list of the products in the recall. Anyone who has purchased any of the items is urged to dispose of or return it to the store for a full refund. Listeria monocytogenes can cause serious and sometimes fatal infections in young children, frail or elderly people, and others with weakened immune systems, the FDA says. Although some people may suffer only short-term symptoms such as high fever, severe headache, nausea, abdominal pain and diarrhea, Listeria can also cause miscarriages and stillbirths among pregnant women.

NoPreview Group (10 participants)

- Sabra is recalling 30,000 cases of hummus due to possible contamination with Listeria, the U.S. said Wednesday. The nationwide recall is voluntary. So far, no illnesses caused by the hummus have been reported. The potential for contamination was discovered when a routine, random sample collected at a Michigan store on March 30 tested positive for Listeria monocytogenes. The FDA issued a list of the products in the recall. Anyone who has purchased any of the items is urged to dispose of or return it to the store for a full refund. Listeria monocytogenes can cause serious and sometimes fatal infections in young children, frail or elderly people, and others with weakened immune systems, the FDA says. Although some people may suffer only short-term symptoms such as high fever, severe headache, nausea, abdominal pain and diarrhea, Listeria can also cause miscarriages and stillbirths among pregnant women.
- Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

Answers: (1) Michigan (2) Washington (3) Ohio (4) Georgia

WithPreview Group (10 participants)

Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

Sabra is recalling 30,000 cases of hummus due to possible contamination with Listeria, the U.S. said Wednesday. The nationwide recall is voluntary. So far, no illnesses caused by the hummus have been reported. The potential for contamination was discovered when a routine, random sample collected at a Michigan store on March 30 tested positive for Listeria monocytogenes. The FDA issued a list of the products in the recall. Anyone who has purchased any of the items is urged to dispose of or return it to the store for a full refund. Listeria monocytogenes can cause serious and sometimes fatal infections in young children, frail or elderly people, and others with weakened immune systems, the FDA says. Although some people may suffer only short-term symptoms such as high fever, severe headache, nausea, abdominal pain and diarrhea, Listeria can also cause miscarriages and stillbirths among pregnant women.

Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

NoPreview Group (10 participants)

- Sabra is recalling 30,000 cases of hummus due to possible contamination with Listeria, the U.S. said Wednesday. The nationwide recall is voluntary. So far, no illnesses caused by the hummus have been reported. The potential for contamination was discovered when a routine, random sample collected at a Michigan store on March 30 tested positive for Listeria monocytogenes. The FDA issued a list of the products in the recall. Anyone who has purchased any of the items is urged to dispose of or return it to the store for a full refund. Listeria monocytogenes can cause serious and sometimes fatal infections in young children, frail or elderly people, and others with weakened immune systems, the FDA says. Although some people may suffer only short-term symptoms such as high fever, severe headache, nausea, abdominal pain and diarrhea, Listeria can also cause miscarriages and stillbirths among pregnant women.
- Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

Answers: (1) Michigan (2) Washington (3) Ohio (4) Georgia

WithPreview Group (10 participants)

Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

Sabra is recalling 30,000 cases of hummus due to possible contamination with Listeria, the U.S. said Wednesday. The nationwide recall is voluntary. So far, no illnesses caused by the hummus have been reported. The potential for contamination was discovered when a routine, random sample collected at a Michigan store on March 30 tested positive for Listeria monocytogenes. The FDA issued a list of the products in the recall. Anyone who has purchased any of the items is urged to dispose of or return it to the store for a full refund. Listeria monocytogenes can cause serious and sometimes fatal infections in young children, frail or elderly people, and others with weakened immune systems, the FDA says. Although some people may suffer only short-term symptoms such as high fever, severe headache, nausea, abdominal pain and diarrhea, Listeria can also cause miscarriages and stillbirths among pregnant women.

Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

NoPreview Group (10 participants)

- Sabra is recalling 30,000 cases of hummus due to possible contamination with Listeria, the U.S. said Wednesday. The nationwide recall is voluntary. So far, no illnesses caused by the hummus have been reported. The potential for contamination was discovered when a routine, random sample collected at a Michigan store on March 30 tested positive for Listeria monocytogenes. The FDA issued a list of the products in the recall. Anyone who has purchased any of the items is urged to dispose of or return it to the store for a full refund. Listeria monocytogenes can cause serious and sometimes fatal infections in young children, frail or elderly people, and others with weakened immune systems, the FDA says. Although some people may suffer only short-term symptoms such as high fever, severe headache, nausea, abdominal pain and diarrhea, Listeria can also cause miscarriages and stillbirths among pregnant women.
- Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

Answers: (1) Michigan (2) Washington (3) Ohio (4) Georgia

WithPreview Group (10 participants)

Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

Sabra is recalling 30,000 cases of hummus due to possible contamination with Listeria, the U.S. said Wednesday. The nationwide recall is voluntary. So far, no illnesses caused by the hummus have been reported. The potential for contamination was discovered when a routine, random sample collected at a Michigan store on March 30 tested positive for Listeria monocytogenes. The FDA issued a list of the products in the recall. Anyone who has purchased any of the items is urged to dispose of or return it to the store for a full refund. Listeria monocytogenes can cause serious and sometimes fatal infections in young children, frail or elderly people, and others with weakened immune systems, the FDA says. Although some people may suffer only short-term symptoms such as high fever, severe headache, nausea, abdominal pain and diarrhea, Listeria can also cause miscarriages and stillbirths among pregnant women.

Question: A random sample from a _____ store tested positive for Listeria monocytogenes.

NoPreview Group (10 participants)

WithPreview Group (10 participants)

NoPreview Group (10 participants)

More fixations overall

WithPreview Group (10 participants)

NoPreview Group (10 participants)

More fixations overall

WithPreview Group (10 participants)

More focused reading

NEural Attention Tradeoff Model (NEAT)

Task Loss: -log P(answer)

Model Behavior

NoPreview Group (Model)

More fixations overall

WithPreview Group (Model)

More focused reading

Take-Away:

Unsupervised machine learning model matches human reading better than previous models

Take-Away:

Unsupervised machine learning model matches human reading better than previous models

Points towards ways of making machine reading more human-like

Language expresses recursive thoughts via linear strings of words.

Did you know
that the doctor
who cured the patient
wrote a book?

Language expresses recursive thoughts via linear strings of words.

We have to recover hierarchical structure from linear sequences on a daily basis.

Did you know
that the doctor
who cured the patient
wrote a book?

Did you know that the doctor who cured the patient wrote a book?

We have to recover hierarchical structure from linear sequences on a daily basis.

But this can sometimes be quite difficult for our minds.

The

report

was

surprising

The

report

that

the

doctor

who

the

lawyer

distrusted

annoyed

the

patient

The report that the doctor who the lawyer distrusted annoyed the patient.

[that the doctor

[who the lawyer distrusted]

annoyed the patient].

[that the doctor

[who the lawyer distrusted]

annoyed the patient]

?????.

[that the doctor

[who the lawyer distrusted]

annoyed the patient]

[that the doctor

[who the lawyer distrusted]

annoyed the patient]

The fact

[that the doctor

[who the lawyer distrusted]

annoyed the patient]

The fact

[that the doctor

[who the lawyer distrusted]

cured the patient]

easy to comprehend

The report was surprising. that the doctor annoyed the patient

The report was surprising.

easy to comprehend

hard to comprehend

The report was surprising.

that the doctor annoyed the patient who the lawyer distrusted

The report was surprising. that the doctor annoyed the patient

The report was surprising.

easy to comprehend

The report

was surprising.

that the doctor

annoyed the patient

who the lawyer distrusted

This word feels confusing to humans.

The report

was surprising.

that the doctor annoyed the patient

The report was surprising.

The report <u>was</u> surprising.

that the doctor annoyed the patient who the lawyer distrusted

The report <u>was</u> surprising. that the doctor annoyed the patient

The report was surprising.

This word feels confusing to humans.

As if humans had trouble counting brackets.

Theories Difficult to Comprehend The report was surprising. annoyed the patient that the doctor who the lawyer distrusted The report was surprising. that the doctor annoyed the patient Easy to Comprehend The report was surprising.

Previous Cognitive

GPT-2 and GPT-3 (Radford et al 2019, Brown et al 2020)

The report that the doctor annoyed the patient was surprising.

The report was surprising. that the doctor annoyed the patient who the lawyer distrusted The report was surprising. that the doctor annoyed the patient

The report was surprising.

GPT-2 and GPT-3

Surprising

Surprise when seeing the final bracket

 $-\log P(was|...)$

Unsurprising

Memory-Constrained GPT-2

The report that the doctor annoyed the patient was surprising.

Memory-Constrained GPT-2

Training Objective: Memory-Constrained GPT-2

arg min
$$\mathbb{E}\left[-\log \mathsf{P}(\mathsf{input}) + \alpha \, \mathsf{\#RememberedWords} \right]$$

Training Objective: Memory-Constrained GPT-2

```
arg min \mathbb{E}\left[ -\log P(\text{input}) + \alpha \, \# \text{RememberedWords} \right] log-likelihood of input text
```

Training Objective: Memory-Constrained GPT-2

Training Objective: Memory-Constrained GPT-2

arg min
$$\mathbb{E}\left[-\log \mathsf{P}(\mathsf{input}) + \alpha \, \mathsf{\#RememberedWords} \right]$$

Trained using reinforcement learning (policy gradient).

Training Objective: Memory-Constrained GPT-2

arg min
$$\mathbb{E}\left[-\log \mathsf{P}(\mathsf{input}) + \alpha \, \mathsf{\#RememberedWords} \right]$$

Trained using reinforcement learning (policy gradient).

Unsupervised: No human data needed.

The report was surprising.

that the doctor annoyed the patient

who the lawyer distrusted

```
The report was surprising.

that the doctor annoyed the patient
who the lawyer distrusted
claim
story
....
```

```
The report was surprising.

that the doctor annoyed the patient
fact who the lawyer distrusted
claim student
story janitor
... assistant
....
```


Total of ~10K different sentences

The report

that the doctor

who the lawyer distrusted

How long does it take a human to process this part?

The report

that the doctor

who the lawyer distrusted

was surprising.

annoyed the patient

who the lawyer distrusted

Crowd-sourced experiment

1000 participants

Each read 10 sentences

How long does it take a human to process this part?

Unsupervised human-like memory component

Correctly predicts when humans find hierarchical structure difficult

Outperforms GPT-2 and cognitive theories

Memory-Constrained GPT-2

katabt	${ m risar a}{ m la}$	li	$\operatorname{sad}\overline{\operatorname{iq}}$
VERB	NOUN	ADP	NOUN
wrote	letter	to	friend

katabt	${ m risar{a}la}$	li	$\operatorname{sad}\overline{\operatorname{iq}}$
VERB	NOUN	ADP	NOUN
wrote	letter	to	friend

tomodachi	$_{ m ni}$	$_{ m tegami-o}$	kaita
NOUN	ADP	NOUN	VERB
friend	to	letter	wrote

katabt	${ m risar a}{ m la}$	li	$\operatorname{sad}\overline{\operatorname{iq}}$
VERB	NOUN	ADP	NOUN
wrote	letter	to	friend
tomodachi	ni	tegami-	o kaita
NOUN	ADP	NOUN	VERB
friend	to	letter	wrote

but not without bounds.

Correlation Universals

Correlation Universals

Object-Verb

letter wrote

Verb-Object

wrote letter

Arabic

katabt wrote risāla letter

li

sadīq friend

Japanese

tomodachi friend

ni to tegami-o letter kaita wrote

Correlation Universals

katabt risāla sadīq li Arabic friend letter to wrote tomodachi tegami-o kaita $_{
m ni}$ Japanese friend letter to wrote

Postpositions **Prepositions** Correlation Universals to friend Object-Verb Japanese, 14 472 Hindi, letter wrote Turkish, ... Verb-Object 42 456 wrote letter English, Arabic,

French, ...

(Dryer 2013) © OpenStreetMap contributors

a Baseline Grammars a Real Grammars

a Baseline Grammars a Real Grammars

a Baseline Grammars a Real Grammars

a Baseline Grammars a Real Grammars

Languages optimized using reinforcement learning

Reproduce many properties of real languages

Real Languages

French, ...

Optimized Languages

Take-Away:

Unsupervised machine learning model predicts properties of human languages

Take-Away:

Unsupervised machine learning model predicts properties of human languages

Could act as prior for NLP models

Characterizing Inductive Bias

How does the transformer architecture determine generalization?

How does LLM pretraining & finetuning change it?

Characterizing Inductive Bias

Can we fix wrong LLM answers by targeted training?

Predicting Difficulty

M You
What is the parity of the following bit string? 0111011010

S chatGPT (gives the wrong answer)

Predicting Difficulty

You

What is the parity of the following bit string? 0111011010

© снатерт (gives the wrong answer)

M You

Can you do the calculation in more detail step-by-step, counting one-by-one the number of ones?

- M You
 What is the parity of the following bit string? 0111011010
- ChatGPT (gives the wrong answer)
- M You

 Can you do the calculation in more detail step-by-step, counting one-by-one the number of ones?
- © ChatGPT
 Certainly! Let's count the number of ones in the bit string 0111011010 step-by-step:

- M You
 What is the parity of the following bit string? 0111011010
- S chatGPT (gives the wrong answer)
- M You

 Can you do the calculation in more detail step-by-step, counting one-by-one the number of ones?
- ChatGPT
 Certainly! Let's count the number of ones in the bit string 0111011010 step-by-step:

- M You
 What is the parity of the following bit string? 0111011010
- ChatGPT (gives the wrong answer)
- M You

 Can you do the calculation in more detail step-by-step, counting one-by-one the number of ones?
- S ChatGPT

 Certainly! Let's count the number of ones in the bit string 0111011010 step-by-step:

- M You
 What is the parity of the following bit string? 0111011010
- S chatGPT (gives the wrong answer)
- M You

 Can you do the calculation in more detail step-by-step, counting one-by-one the number of ones?
- © ChatGPT

 Certainly! Let's count the number of ones in the bit string 0111011010 step-by-step:

- You
 What is the parity of the following bit string? 0111011010
- S chatGPT (gives the wrong answer)
- M You

 Can you do the calculation in more detail step-by-step, counting one-by-one the number of ones?
- © ChatGPT

 Certainly! Let's count the number of ones in the bit string 0111011010 step-by-step:

```
Step 1: 0 (count: 0)
Step 2: 1 (count: 1)
Step 3: 1 (count: 2)
Step 4: 1 (count: 3)
Step 5: 0 (count: 3)
Step 6: 1 (count: 4)
Step 7: 1 (count: 5)
Step 8: 0 (count: 5)
Step 9: 1 (count: 6)
Step 10: 0 (count: 6)
```

Predicting Difficulty

Certainly! Let's count the number of ones in the bit string 0111011010 step-by-step:

```
Step 1: 0 (count: 0)
Step 2: 1 (count: 1)
Step 3: 1 (count: 2)
Step 4: 1 (count: 3)
Step 5: 0 (count: 3)
Step 6: 1 (count: 4)
Step 7: 1 (count: 5)
Step 8: 0 (count: 5)
Step 9: 1 (count: 6)
Step 10: 0 (count: 6)
```

So, counting one by one, we find that there are 6 ones in the bit string 0111011010. The count is even. Therefore, the parity of the bit string is even.

now, transformer gives the right answer!

Predicting Difficulty

When does this work?

Predicting Difficulty

When does this work?

Given a problem family, how can we predict how many steps are needed?

Predicting Difficulty

When does this work?

Given a problem family, how can we predict how many steps are needed?

How can we enable to LLM to convincingly certify correctness of each step?

Mechanistic Interpretation

We need techniques for working out how LLMs work internally

Mechanistic Interpretation

We need techniques for working out how LLMs work internally

Which attention heads attempt to solve parity?

Mechanistic Interpretation

We need techniques for working out how LLMs work internally

Which attention heads attempt to perform parsing?

Mechanistic Interpretation

We need techniques for working out how LLMs work internally

Which attention heads extract knowledge from context?

Mechanistic Interpretation

We need techniques for working out how LLMs work internally

Will enable better understanding of failures.

Capabilities and limitations of neural ML architectures

Reverse-engineer human language comprehension using LMs

Capabilities and limitations of neural ML architectures

Reverse-engineer human language comprehension using LMs

Capabilities and limitations of neural ML architectures

Reverse-engineer human language comprehension using LMs

Capabilities and limitations of neural ML architectures

Reverse-engineer human language comprehension using LMs

The two young sea-lions took not the slightest interest

in our arrival. They were playing on the jetty, rolling over and tumbling into the water together, entirely

Capabilities and limitations of neural ML architectures

Reverse-engineer human language comprehension using LMs

The two young sea-lions took not the slightest interest in our arrival. They were playing on the jetty, rolling over and tumbling into the water together, entirely

Thank you!