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2011: Watson
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Natural Language Processing

NLP could retrieve 
knowledge

...but couldn’t really 
articulate coherent 
sentences

2011: Watson

Image credit: http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303/2165
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2022: ChatGPT

Image credit: Vaswani et al, https://arxiv.org/pdf/1706.03762.pdf
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Autocomplete

Image credit: https://blog.google/products/gmail/save-time-with-smart-reply-in-gmail/



Language Models

Helping people write code

Image credit: https://github.com/features/copilot
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Language Models

Customer Service Chatbots

Image credit: https://www.ultimate.ai/ultimategpt-chatgpt-for-customer-service
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Natural Language Processing

These models are black boxes.

Hard to understand their 
limitations & failures.

Creates problems for real-world applications.
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Capabilities and Limitations of Transformers

What capabilities can we expect, 
given the architecture and the 

training data?
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PARITY (XOR)
Bit strings with even 

number of 1s
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0000101011

Relevance to Language: Negation

not unhappy
not (not (happy))

happy

happy

unhappy

not (happy)
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even

Parity Function

1
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Transformers

Theorem Hahn, TACL 2020
No transformer can represent PARITY robustly at all input lengths.

(TACL 2020)
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Similar result for “soft 
attention”.
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Transformers

X1 X2 X3 X4 X5

. . .Suspected to have 
limited expressive 
capacity

But, previously no proof 
for this intuition

Theorem (TACL 2020)
No transformer can 
represent PARITY robustly 
at all input lengths.

Information is 
propagated upwards

(TACL 2020)

Prediction
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Assume we have a transformer for PARITY.

X1 X5X2 01

. . .

Prediction

Construct two inputs that are classified the 
same, even though one is EVEN and the 
other is ODD.

Method: Strategically fix a few input 
bits to ‘distract’ the transformer, so that 
it ignores part of the input.

Approach: Probabilistic Method

Proof Strategy

Hahn, TACL 2020
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(TACL 2020)
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Prediction

. . .

Set each input i.i.d. to

   
  
  

(TACL 2020)

1 0freefree free

with p=10%

with p=80%

with p=10%1

0

free

Proof Strategy

Analogous to Random Restrictions 
from Circuit Complexity!
Furst, Saxe, Sipser 1984

Håstad 1986

Hahn, TACL 2020
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1 0

Show this by
1. calculating for each head
2. combining via Lovasz Local 

Lemma
3. induction over number of 

layers
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These strings will be classified the 
same, even though their parities are 
different.

Contradiction!

X1 X5X2 01

Prediction

. . .

Ignored by 
transformer!

Assume we have a transformer for PARITY.

Construct two inputs that are classified the 
same, even though one is EVEN and the 
other is ODD.

Proof Strategy

0 00 01

0 10 01

odd

even
Hahn, TACL 2020
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Theorem (TACL 2020)
No transformer can 
represent PARITY robustly 
at all input lengths.

X1 X5X2 01

Prediction

. . .

0 00 01

0 10 01

odd

even

Ignored by 
transformer!

Limitations of Transformers

Hahn, TACL 2020

Consistently confirmed by empirical 
studies

• Bhattamishra et al 2020
• Chiang and Cholak 2021
• Delétang et al 2022
• Ruoss et al 2023
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MSE on 
synthetic 
functions

Average number of Hamming neighbors on which the label flips
(“average sensitivity” or “total influence”)

after 10000 steps 
of SGD

PARITY

Highly sensitive 
functions are very 
hard for transformers 
to learn.
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Not just parity

In reality, the lawyer called 
the doctor.

the lawyer called back…

Getting this right requires context-free parsing.
Similar limitations apply as for PARITY Hahn, TACL 2020.
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Not just parity

incorrect!

the lawyer called back…
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Modeling Human Reading

Prior approaches:

My approach:

Unsupervised model overcoming limitations

Limitations:
Need human gaze data
Does not generalize across reading tasks

(EMNLP 2016)

hand-crafted models 

supervised models

Interest in human reading for NLP (e.g., Barrett et al 2018; Malmaud et al 
2020; Sood et al 2020)

 (Nilsson and Nivre 2009; Mathies and Sogaard 2013)

(Engbert et al 2002; Reichle et al 1998, 2009)
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Hypothesis: Human reading is optimized for

efficiently extracting 
information

maximizing 
speedwhile

Modeling Human Reading
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arg min E [ TaskLoss + α #{Words Read}]

Training Objective

(EMNLP 2016)

Solve downstream task with minimal attention:

Trained using reinforcement learning (policy gradient).

NEural Attention Tradeoff Model (NEAT)
Hypothesis: Human reading is optimized for

efficiently extracting 
information

maximizing 
speedwhile
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NEural Attention Tradeoff Model (NEAT)
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WithPreview Group (10 participants)NoPreview Group (10 participants)

More focused reading

More fixations overall More focused reading



Answer B

Task Loss: -log P(answer)

The two young sea-lions took not the slightest interest

NEural Attention Tradeoff Model (NEAT)



Model Behavior

More focused readingMore fixations overall

WithPreview Group (Model)NoPreview Group (Model)
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Unsupervised machine 
learning model matches 
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Human Upper Bound

Accuracy

E-Z Reader
(Previous)

NEAT
(Ours)

Random

Unsupervised machine 
learning model matches 
human reading better than 
previous models

Points towards ways of 
making machine reading 
more human-like

Take-Away:

Accuracy Predicting Human Fixations

0%

50%
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Motivation

We have to recover hierarchical structure from linear sequences on a daily 
basis.

Did you know
        that the doctor
                   who cured the patient
        wrote a book?

Did you know that the doctor who cured 
the patient wrote a book?

But this can sometimes be quite difficult for our minds.
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(Under review at PNAS)

The report was surprising.

 that the doctor annoyed the patient 

who the lawyer distrusted 

The report
 that the doctor 

was surprising.
annoyed the patient 

The report was surprising.

This word feels 
confusing to 
humans.
As if humans had 
trouble counting 
brackets.

(

[
{ }

]

)
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Comprehending Hierarchical Structure

(Under review at PNAS)

GPT-2 and GPT-3

The report was surprising.

 that the doctor annoyed the patient 

who the lawyer distrusted 

The report
 that the doctor 

was surprising.
annoyed the patient 

Surprising

Unsurprising

The report was surprising.

Not human-like!

Surprise when 
seeing the final 
bracket
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Memory-Constrained GPT-2

(Under review at PNAS)

The report that the doctor annoyed the patient was surprising.

Memory 
Component

GPT-2

report doctor annoyed patient surprisingwasThe - - -
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(Under review at PNAS)

α #RememberedWords

Training Objective:

- log P(input) +

Memory-Constrained GPT-2

arg min

log-likelihood of 
input text

memory load
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Memory-Constrained GPT-2

(Under review at PNAS)

α #RememberedWords

Trained using reinforcement learning (policy gradient).

Training Objective:

- log P(input) +

Memory-Constrained GPT-2

Unsupervised: No human data needed.

arg min
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fact
claim
story

...

student

janitor

assistant

...

cured the patient

wrote a book

was happy

...

startled Josh

was incorrect

shocked people

...

Total of ~10K different sentences

(Under review at PNAS)
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Stimulus Set

who the lawyer distrusted 

The report
 that the doctor 

was surprising.
annoyed the patient 

How long does it take a 
human to process this 

part?
Crowd-sourced 
experiment

1000 participants

Each read 10 sentences

(Under review at PNAS)
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Model Negative Log Probability
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Memory-Constrained GPT-2

Correctly predicts when humans find 
hierarchical structure difficult

Outperforms GPT-2 and cognitive 
theories

Unsupervised human-like memory 
component
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OV languages with 
postpositions

VO languages with 
prepositions

(Dryer 2013) © OpenStreetMap contributors



(PNAS 2020)
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(PNAS 2020)

SIMPLICITY:
They should be simple.

1. 

Simplicity = - H[Sentences]

Implemented using LSTM 
language model.



Unambiguity

S
im

pl
ic

ity

(PNAS 2020)

UNAMBIGUITY:
They should not be too ambiguous 
about the meaning.

2. 

Unambiguity = - H[Meanings|Sentences]

Implemented using neural 
dependency parser.
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Chinese

English

(PNAS 2020)
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Unambiguity

Languages optimized 
using reinforcement 
learning

S
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pl
ic

ity

(PNAS 2020)

Reproduce many 
properties of real 
languages
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Unambiguity

S
im

pl
ic

ity

(PNAS 2020)

Unsupervised machine 
learning model predicts 
properties of human 
languages

Could act as prior for 
NLP models

Take-Away:
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What’s Next?

Characterizing Inductive Bias

Training Set Generalization to new inputs

?

Transformer

Can we fix wrong LLM answers by targeted training?
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What’s Next?

Predicting Difficulty

Every step is 
computationally much 
easier than PARITY.now, transformer gives the 

right answer!
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What’s Next?

Predicting Difficulty

When does this work?

How can we enable to LLM to convincingly certify correctness of each step?

Given a problem family, how can we predict how many steps are needed?
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Mechanistic Interpretation

We need techniques for working out how 
LLMs work internally

X1 X2 X3 X4 X5

. . .

Prediction

Which attention heads extract 
knowledge from context?



What’s Next?

Mechanistic Interpretation

We need techniques for working out how 
LLMs work internally

X1 X2 X3 X4 X5

. . .

Prediction

Will enable better understanding of failures.
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Capabilities and limitations 
of neural ML architectures

Conclusion

Reverse-engineer human 
language comprehension 

using LMs



Thank you!


